ANALYSIS OF PRECISION INSERT BEARING INTERFERENCE FIT

Thomazi, C. C.;
Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia
cethomazi@acesita.com.br

Villar, M. M.
Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Brasil
mmvilla@mecanica.ufu.br

Pérez, M. M.
Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Brasil
Av. João Naves de Ávila 2121 – CEP 38408-100 – M.G. Brasil
marioperez@nanet.com.br

Syngellakis, S.
School of Engineering Sciences, University of Southampton, UK

Abstract: The influence of the interference fit of precision insert bearings on the radial displacements and on the stress distribution in the bearing are investigated in this paper. The insert considered in the analysis is a thin steel shell to which a layer of an antifriction metal is bonded. The influence of the elasticity of the housing on the stress distribution in the insert, as well as the influence of the friction between the insert and the housing during the fitting, are investigated separately for the bearing spread and the bearing crush. Two-dimensional finite element models are used in the analysis. Results obtained for hoop stress on the bearing surface confirm the strong influence that the stiffness of the housing has on the bearing stress distribution.

Key words: interference fit, precision insert bearings, stress analysis, fatigue failure.

1. INTRODUCTION

The current trends in performance and reliability of automotive bearings have resulted in the need for better materials and improved understanding of their behaviour under complex thermo-mechanical loading conditions. Since engine horsepower is sensibly increasing, there is growing concern that engine bearings may fail to provide proper strength and wear characteristics. Besides, it is important that design engineers can understand the different possible modes of failure of the available materials under operating conditions. This will enable the designer to produce reliable bearings, yet keeping manufacturing costs to a minimum.

Automotive engine bearings, of the type most commonly used in main and connecting-rod big-end bearings, consist of two thin steel shells, or inserts, lined with an antifriction metal. These insert bearings are clamped into the housing bore when the bolts are tightened. They are manufactured to very close tolerances and should be assembled with great care (Wilson and Shone, 1983). The lining material is usually a white-metal, a bronze, a copper alloy, or a soft aluminium alloy. The antifriction lining is bonded to a steel backing to ensure that the bearing retains its shape and has satisfactory
fatigue strength. A barrier foil is sometimes used between layers to prevent embrittlement by diffusion of alloying elements.

Currently, the anticipated life of a set of car engine bearings corresponds to perhaps 3000 to 4000 hour of operation (roughly equivalent to 200000 km) and, in most cases, probably less than 500 hours will be at more than 75 per cent of full load. Despite the fact that these are, by industrial standards, extremely short-life conditions (Welsh, 1983), the bearing operating conditions in new engine designs are becoming even more severe. This makes it important to study the stress distribution in precision insert bearings to future proof both bearing design and the materials used in their construction.

Bearing design, however, is being increasingly influenced by the need to reduce power loss and noise generation, as well as to increase speed. There is also a trend to increase the loading and, consequently, bearings are operating closer to their design limits. In reality, bearings undergo significant changes in shape as the shell and the housing deform elastically under load. This has a significant influence on the oil film pressure distribution (Pinkus and Sternlicht, 1961) and drastically modifies the predicted bearing behaviour.

The elastic deformation of less rigid connecting-rod big-end bearings due to the hydrodynamic pressure is often larger than the radial nominal clearance (van der Tempel et al., 1985). Consequently, the influence of the bearing stiffness and the bearing fit should be carefully investigated.

While fatigue damage is a localised surface phenomenon due to repeated stress application, the fatigue strength of a component is affected principally by the properties of the material, the geometry of the component, in the form of stress concentration features, the surface integrity, in the form of roughness and corrosion pits, the state of residual stress, and cyclic loading conditions. Often the fatigue strength of a component is surprisingly low, and knowledge of the tensile strength does not usually indicate how low (Meguid, 1989). According to Baker (1985) fatigue and seizure are the major causes of failure for plain bearings.

Despite the importance that an accurate stress analysis would have in the prediction of the fatigue in insert bearings, a complete analysis considering the manufacturing processes, mounting and service conditions has not been found in the literature, possibly due to its inherent complexity. The stress distribution in these elements depends on a series of factors, such as the manufacturing processes used, the way they are fitted, and the complex thermo-mechanical loading to which they are subjected under operating conditions.

The lack of reliable models that would allow a comprehensive stress analysis in insert bearings certainly imposes restrictions in new designs of internal combustion engines. Besides, this situation also hampers the development of a bearing fatigue theory that would help to reduce the testing costs which presently accompany innovation. Baker (1985) indicates that one of the main development objectives for crankshaft bearings is to improve their capability of dealing with higher stresses and thinner oil films in more dynamically flexible engines, along with an increase in temperature and corrosion resistance.

To predict the life of a plain bearing with respect to fatigue it is necessary not only to identify which are the relevant sources of stress but also to quantify the influence that each of them has on the final stress distribution, comparing the critical stress levels with the strength of the antifriction lining against fatigue.

The residual stress distribution left in insert bearings by manufacturing processes as well as the stress distribution due to the interference fit have been largely overlooked by analysts. To overcome this gap, the development of numerical models will certainly allow the assessment of the influence that each stress source has on bearing fatigue.

In this paper the radial displacements of the bearing surface, the stress distribution in thin-shell inserts, and the contact pressure distribution between the insert and the housing due to the bearing interference fit are investigated using the Finite Element Method (FEM). The influence of the elasticity of the housing is considered in the analysis.
2. PRECISION INSERT BEARING INTERFERENCE FIT

Modern bearings are manufactured to very close tolerances and should be assembled with great care. In order to provide adequate support and proper heat transfer, as well as accurate alignment, it is essential that the insert contact the housing properly. Thin-walled inserts are manufactured to produce proper interference fit by incorporating bearing spread and bearing crush (also named bearing nip) in the design (Stockel, 1969).

The bearing spread and the bearing crush must be carefully observed as they are responsible for the existence of an adequate clearance between the bearing and the journal. Xu (1996) stated that an accurate prediction of the stress distribution in engine bearings requires the consideration of the stresses induced by the interference fitting. The stress generated during fitting is further increased by natural heating up of the bearing and the heat flow during operation (Maass, 1977).

Precision inserts bearings are manufactured in a way that the outside diameter across the parting edges (edges where the bearing halves come together) is slightly larger than the housing bore (Fig. 1). This makes it necessary to force or snap the insert into the housing by applying thumb pressure to the parting edges. The free spread ($a - b$) has the purpose of forcing the parting edges against the housing. Thus, when the bolts are tightened, the parting edges will tend to be compressed more against the housing, rather than bending inward, against the journal, reducing the clearance in that region and not fitting properly in its housing close to the parting edges. The spring effect provided by the bearing spread also holds each half bearing in place during the fitting operations (Welsh, 1983; Stockel, 1969; Maass, 1977).

Bearing spread causes compression on the surface of the lining to a degree governed by the bending of the backing. The express recommendation that inserts should not be forced into place by pressing on the middle, as this could warp the insert (Stockel, 1969), can be taken as an evidence that the influence of bearing spread on the stress field should be carefully assessed.

Bearing crush or tangential pre-stress is the name given to the interference fitting of the insert bearings into the housing due to the tightening of the bolts. Inserts are designed so that, after the two shells are mapped into place, the parting edges will protrude a slight amount above the bore parting edges. In effect, each insert is slightly larger than the full half circle (Fig. 2). Bearing crush will hold the bearing shells against rotation by generating a radial pressure against the housing bore while nicks, tangs or lugs are recommended only to locate the inserts during assembly (Maass, 1977).

Figure 1: Bearing spread. The bearing diameter, a, is a trifle larger than the bore diameter b.

Bearing spread causes compression on the surface of the lining to a degree governed by the bending of the backing. The express recommendation that inserts should not be forced into place by pressing on the middle, as this could warp the insert (Stockel, 1969), can be taken as an evidence that the influence of bearing spread on the stress field should be carefully assessed.

Bearing crush or tangential pre-stress is the name given to the interference fitting of the insert bearings into the housing due to the tightening of the bolts. Inserts are designed so that, after the two shells are mapped into place, the parting edges will protrude a slight amount above the bore parting edges. In effect, each insert is slightly larger than the full half circle (Fig. 2). Bearing crush will hold the bearing shells against rotation by generating a radial pressure against the housing bore while nicks, tangs or lugs are recommended only to locate the inserts during assembly (Maass, 1977).
Conway-Jones (1973) defined the crush, n, as the amount by which the total peripheral length of both halves under no load exceeds the peripheral length of the housing. He suggested the minimum crush as a function of the bore diameter, b, and the thickness of the backing, t_b (Fig. 1), as:

$$n = 4.4 \times 10^{-5} - 5 \frac{b^2}{t_b}$$

or

$$n = 0.12$$

whichever is larger (units in mm). For white-metal lined, or similar lightly loaded inserts, the minimum crush may be halved.

When the bearing is bolted together, the crush area touches first. As tightening progress, the crush area is forced beneath the bore parting edges, thus opening (bending outward) the insert and creating a tight insert to bore contact through radial pressure Fig. 2b. The tightening of the bolts also results in an inward displacement close to the split line, Fig. 3a, thus reducing the clearance between the journal and the bearing in these regions. Welsh (1983) mentions that, to overcome this, bearings must always be provided with a bore relief, Fig. 3b. This inward displacement of the parting edges due to elastic deflection is especially harmful in modern high speed engines, as elasto-hydrodynamic analyses show that peak pressures also occur close to these regions (pinch effect) causing wear and fatigue of the bearing lining.

Figure 2: Bearing crush. When rod and cap are drawn together as in (a), the bearing crush, as shown in (b), produces radial pressure forcing insert tightly against the bore.

Figure 3: Bore relief. (a) Effect that would arise in absence of bore relief (for simplicity, no lining is shown in this figure); and (b) bore relief.
Xu and Crooks (1997) showed that the pinch effect has a particularly profound effect upon the cap half bearing in some modern engines that are operated at high speeds, causing wear and fatigue of the bearing lining. Excessive interference fit or stagger at joint faces during assembly, due to excessive bolt clearances, can also cause fatigue at split of bearings (Holligan, 1973).

For diameters up to 150 mm Welsh (1983) recommended a relief of $B = 0.012$ to 0.025 mm along the full length of both sides of the insert whilst, for diameters over 150 mm he recommended a relief of $B = 0.025$ to 0.050 mm. In both cases the relief should extend circumferentially for about $A = 1.2 + d/10$ mm as shown in Fig. 3b.

3. FINITE ELEMENT MODELLING

Two-dimensional solid eight-node isoparametric (Plane82) and three-node parabolic shape contact finite elements (Conta172 and Targe169) of the general-purpose finite element program ANSYS®, Release 5.7, are used to model the bearing spread and the bearing crush within the housing. Owing to the symmetry of the problem, only one half of the insert bearing is modelled. The symmetry is obtained numerically by constraining the displacements of the nodes on the centreline of the bearing and the housing in the circumferential direction.

For the analysis involving an elastic housing, a vertical constraint was imposed in the midsize of the housing parting edge (Figs. 4b and 5b). This displacement constraint simulates the support provided by the bolt that clamps the bearing cap to the rod.

It is assumed that the lining and the backing materials are elastic and isotropic. The elastic housing is modelled by including an external thick ring in the model. The presence of rigid Coulomb friction between the backing and the housing surfaces is considered in all cases.

As the ratio of the thickness of the lining to other dimensions of the bearing is very small, care is taken in order to keep the element aspect ratio (Desai and Abel, 1972) - ratio of the element larger side to the smaller - within acceptable limits. In this sense, as a consequence of using a fine mesh in the radial direction, needed to model the lining, a fine mesh is also adopted to model the circumference of the bearing.

Due to the fact that contact problems are highly non-linear (ANSYS, 1996), and the stress pattern across the interface of different materials is not continuous, very refined models are also necessary in order to determine accurately the stress distribution in the regions of discontinuity (Dietrich and Levi, 1987).

A mesh consisting of 2 x 90 Plane82 elements (in the radial and circumferencial directions, respectively) is adopted for modelling the lining, while a mesh of 4 x 90 Plane82 elements is used to model the backing. The external thick ring used to simulate the housing is modelled using a mesh of 6 x 90 Plane82 elements. Ninety Conta172 elements are used to model the back of backing surface (contact surface) while 90 Targe169 elements are used to model the housing surface (target surface).

For all models it is assumed that there is perfect bonding of the lining to the backing, thus ensuring continuity of displacements in that region. All models are considered under plane strain by assuming that there is no deformation along the longitudinal axis of the bearing. According to Ibrahim and McCallion (1970) this is a realistic assumption for the length/diameter ratios occurring in practice. Besides, from bearing fatigue tests, Lang (1977) concluded that investigations could be restricted to the middle section of cylindrical bearings while Hacifazlioglu and Karadeniz (1996) considered the two-dimensional approach acceptable for a pre design.

The bearing spread is modelled by positioning the undeformed insert in contact with the parting edges of the housing and then imposing a prescribed radial displacement, \bar{r} at the bottom node on the centreline of the insert. This prescribed radial displacement has the purpose of closing the gap, g, between the insert and the housing ($\bar{r} = g$). The configurations used in the analysis are shown in Fig. 4.
The crush load consists in prescribed displacements on the bearing parting edge. The results obtained numerically for the hoop stress far from the parting edges of the insert are validated through a simplified analytical approach. The configurations for the analysis of the bearing crush are shown in Fig. 5.

Figure 4: Configurations used for the analysis of the bearing spread: (a) perfectly rigid housing, and (b) elastic housing.

Figure 5: Configurations used for the analysis of the bearing crush: (a) perfectly rigid housing, and (b) elastic housing.

4. RESULTS AND DISCUSSIONS
The dimensions used for the models are internal diameter
\(d = 52\) mm; thickness of the aluminium alloy lining \(t_l = 0.25\) mm; and thickness of the steel backing \(t_b = 1.505\) mm. A 12 mm thick external ring is included in the model in the cases where the effects of the housing elasticity are considered.

The elastic properties of the antifriction lining are assumed to be the material properties of the aluminium alloy AS124A. These are modulus of elasticity \(E_l = 69.7\) GPa. Poisson ratio \(\nu_l = 0.33\) and compressive yield strength \(S_{yl} = 54.0\) MPa. The elastic properties of steel (modulus of elasticity \(E = 207\) GPa, and Poisson ratio \(\nu = 0.29\)) are taken for the backing and for the 12 mm thick external ring.

The results presented here are for a coefficient of friction at the interface between the insert and the housing \(\mu = 0.8\), which is the value recommended by Tabor (1973) for steel on steel contact. Although the influence of the elastic Coulomb friction between the insert and the housing is considered, no significant difference on the results were noted when compared to the results obtained for frictionless contacts.

For all cases, results are presented for the distribution of radial displacement, of hoop stress, and for the distribution of von Mises stress at the surface of the bearing. The distribution of contact pressure between the insert and the housing is also presented.

4.1. Bearing Spread

Conway-Jones (1973) gives some guidance of the typical minimum spread. The value adopted in the present paper is \(s = 0.3\) mm \((s = a - b, \text{ see Fig } 1)\). This value leads to an initial gap at the centreline of the bearing equal to \(g = 2.74\) mm, Fig. 4.

The distributions of the radial displacement, of the hoop stress, and of von Mises stress at the surface of the lining due to the bearing spread within a perfectly rigid and within an elastic housing are presented in Figs. 6 and 7 respectively.

![Figure 6: Distribution of radial displacement due to the bearing spread.](image)

It can be seen in Fig. 6 that a significant deviation of the bearing nominal radius occurs close to the bearing parting edges.

Although the outward bending of the insert due to bolt tightening tends to minimise the insert inward displacement caused by the bearing spread (see Fig. 6), care should be taken in order to avoid the possibility of reducing the bearing diameter close to the split line, as shown in Fig. 3. It is this outward bending that impels the curved shell against the housing bore.

It can be observed that the difference between the results for the perfectly rigid housing and the elastic housing for the case analysed here is negligible.
The distribution of contact pressure at the interface between the insert bearing and the housing is presented in Fig. 8. The spikes that occur at $\theta = 0$ arise from the elastic contact that occurs close to the dividing line of the housing.

Figure 7: (a) Distribution of hoop stress and (b) distribution of equivalent (von Mises) stress at the bearing surface due to the bearing spread

Figure 8: Contact pressure distribution at the interface between the insert bearing and the housing due to the bearing spread.

4.2. Bearing Crush

The bearing crush is modelled without considering the stress distribution due to the bearing spread. The bearing shell (insert bearing) is considered in perfect contact with the housing while the edges of the bearing shell are considered to be horizontal at the beginning of the loading that corresponds to the tightening of the bolts, i.e., the lack of contact that occurs between the insert and the housing bore and the deformation due to the bearing spread are both neglected. The height to be crushed into the half-bearing, known as the crush height, is taken equal to $h/4 = 0.03$ mm. This value was obtained from Eq. 2. The distributions of the radial displacement, of the hoop stress, and of von Mises stress at the surface of the bearing are presented in Figs. 10 and 11, respectively.

When the two shells are bolted up, and forced into contact with the whole surface of the housing bore (Fig. 2b), significant hoop compressive stresses will appear in the lining (Fig. 11). These compressive stresses caused by the crushing will reduce or neutralise the residual tensile stresses that occur at the bearing surface due to the cold-forming process, thus affecting the range of shakedown.

1 This mechanism is also referred to as strengthening of a structure or auto-frettage and it is widely used in engineering to increase the life-time of structures by plastic pre-staining (Kachanov, 1974).
(Kachanov, 1974) of the bearing. Bearing crush will also reduce or neutralise the bending distortion that takes place close after the trailing end of the hydrodynamic pressure distribution (Maass, 1977). Stockel (1969) recommended never to file bearing caps or the protruding extremities of the inserts as this may ruin the bearing.

Figure 10: (a) Distribution of radial displacement and (b) hoop stress due to the bearing crush.

The numerical results obtained for the hoop stress far from the parting edges of the insert are compared to the value obtained analytically by considering the bearing shell unwrapped (straightened) and subjected to a prescribed displacement that would make the length of the unwrapped shell equal to the perimeter of the housing bore. The value of the compressive stress thus obtained is \(\sigma_p = 51.12 \) MPa. This value is assessed by multiplying the modulus of elasticity of the aluminium lining by the deformation imposed by the crush to the steel baking.

It may be observed that the higher the elasticity of the housing, the lower the compressive hoop stress on the lining, and, consequently, more prone to fatigue failure the insert will be.

For the assumption of perfectly rigid housing, the lining undergoes plastic deformation close to the parting edge. The equivalent stress is significantly lower in the case where a elastic housing is considered (Fig. 11).

Figure 11: Distribution of equivalent (von Mises) stress at the surface of the bearing due to the bearing crush.
Figure 12: Distribution of radial reaction (contact pressure) on the insert due to the bearing crush.

The distribution of the radial reaction (contact pressure) exerted by the housing on the back of the insert due to the bearing crush is presented in Fig. 123. These values obtained for the case of perfectly rigid housing are in agreement with those suggested by Conway-Jones (1973). However, the pressure drops significantly when a less stiff housing is considered. This low pressure may permit the bearing to rotate on the housing, which is extremely dangerous to the bearing life and performance.

5. CONCLUSIONS

The influence of the interference fit of thin-walled precision insert bearings on the stress distribution in the bearing is investigated in this paper. The effects of the bearing spread and the bearing crush are investigated using two-dimensional finite element models. The presence of friction between the insert and the housing is considered in the analysis. Although only approximate, the results presented here allow some conclusions of a general character to be drawn.

The distributions of radial displacement along the bearing circumference show that the influence of the bearing spread and the bearing crush on the bearing profile are significant and make clear the importance of the bore relief. Since the gap between journal and bearing is very small, the bore relief is important as it helps to minimise the effect of the inward displacement of the parting edges of the bearing caused by the crush on the hydrodynamic pressure distribution.

The superposition of the stress distributions due to the bearing spread and the bearing crush shows that significant stresses occur at the surface of the lining as a result of the fitting operation. The influence of the bore relief on the stress distribution in the bearing (not presented here) is, nevertheless, negligible.

Due the compressive hoop stress that arises during assembly, one may conclude that bearing spread and bearing crush are important to prevent fatigue failure in the lining. However, their values must be carefully assessed to avoid excessive interference fit or stagger at joint faces, which will also cause fatigue close to the parting edge of the bearings (Holligan, 1974).

The elasticity of the housing is an important factor to consider if one wants to predict the life of the engine bearings with respect to fatigue. The magnitude of the compressive hoop stresses that occur at the surface of the lining due to the bearing crush decreases remarkably with the stiffness of the housing, thence making the bearing more vulnerable to the tensile hoop stresses resulting from the bending distortions that take place at the end of the hydrodynamic pressure distribution (Hacifazlioglu and Karadeniz, 1996; Pérez et al., 2000). Pérez et al. (2000) have also shown that the more flexible the
housing, the higher the maximum tensile hoop stress at the end of the hydrodynamic pressure distribution.

The higher compressive hoop stress due to the crush occurs at the surface, close to the parting edges of the bearing. It is also possible to note that it decreases with the reduction of the stiffness of the housing. Thence big-end connecting-rod bearings, particularly the bearing caps (Xu, 1997), of the modern automotive engines are more susceptible to fatigue failure when compared to the main crankshaft bearings since the former are generally less rigid than the latter and have to support the full loading from the connecting-rod.

The friction between the insert and the housing does not have any significant influence on the stress distribution in the lining due to the bearing crush. Besides, the values presented by Conway-Jones (1973) for the contact pressure between the insert and the housing are in agreement with those presented here for the perfectly rigid housing. In contrast to this, when the elasticity of the housing is considered, the values presented by him are about three times lower than the ones presented here. Finally, the influence of the bearing spread on stress distributions is significant, when compared to the influence of the bearing crush, particularly at the bearing surface.

6. ACKNOWLEDGMENTS

The first three authors would like to thank Ms. S. Rizzioli and Mr. M. L. de Oliveira, of Fiat Automóveis S.A., and Prof. C. A. de Almeida, of the Departamento de Engenharia Mecânica of Pontifícia Universidade Católica do Rio de Janeiro for the support to the development of this work. The first two authors are also grateful to CAPES and CNPq, agencies of the Ministry of Education and Ministry of Science and Technology, respectively, of Brazil, for the financial support to this research project. The third author would also like to acknowledge the support received from the Fundação de Amparo a Pesquisa de Minas Gerais, FAPEMIG, which provided part of the computational resources used for the development of this research.

7. REFERENCES

Maass, H. (1977), Ideas and Hypotheses on Plain Bearing Failures, ASME Paper no.77-DGP-13, presented at the Energy Technology Conference and Exhibit, Houston, Texas, September 18-22, Diesel & Gas engine Power Division of the ASME.